半導体WEB リンク集

(有)セミコンブレーン 2025年版 Ver.12

分類	内容	頁
А	総合情報	1
В	電気・化合物・パッケージ (1) (2)	2,3
С	品質 • 信頼性 • 環境 • 生産管理 • 統計 (1)(2)	4,5
D	計測 (1) (2)	6,7
Е	ガス・薬品・安全(1)(2)	8,9
F	純水・防塵・クリーンルーム(1)(2)	10,11
G	プロセス・装置・真空・部材・治具(1)(2)(3)(4)	12~15

チップ製造 国家技能検定 半導体WEB リンク集 - 1/15

内容	リソース	A:総合情報
チップ製造受験	半導体製造工程の 部屋	半導体製造工程と国家技能検定である半導体製品製造(集積回路チップ製造作業)の受験勉強用として 必須なサイト。● 半導体製品製造試験の講座(集積回路チップ製造作業) ● 学科・実技(要素) ※(45万7クセス/2012.7) HPの運営は終了しました。 「半導体製造工程の部屋_PDF版」 過去問題集に添付して提供していますので参照下さい。
半導体 ポータル サイト	<u>Semi Journal</u>	半導体解説 https://semi-journal.jp/glossary 半導体の基礎 https://semi-journal.jp/basics/beginner 製造工程 https://semi-journal.jp/basics/process/flow.html
半導体製造 技術	寺小屋みほ(1)	元日本TI技術者 宇津木勝氏 ブログ>技術部門>半導体>・半導体プロセス(<u>俯瞰:基礎</u> 、 <u>事始め</u> TRからIC、要素プロセス>ウエット、エッチング、PVD、CVD、フォトリン、インプラント、熱工程、CMP)・半導体・その他の技術(<u>素子分離、よもやま話し、解析TEG、Low-KとHi-K</u>)、半導体プラズマ装置、半導体真空装置 https://terakoyamiho.wordpress.com ※半導体製造の経験・ノウハウが多数有り。
電子デバイス 物理	甲南大学理工学部 物理学科	半導体/電子デバイス物理:講義の補助用として製作されたもの。 半導体のアニメーションができる。 http://kccn.konan-u.ac.jp/physics/semiconductor/top_frame.html
電子情報通信	<u>電子情報通信学会</u>	<u>電子情報通信学会</u> は・・この度(2010年)新しくITを積極的に導入した「知識ベース」を構築し、これを広く公開することといたしました。知識ベースには、すべてを含めると、18群、140編が計画されております。トップページ ≫ 10群 集積回路 ≫ 2編 集積回路製造技術 2 章 シリコン結晶技術 http://www.ieice-hbkb.org/files/10/10gun_02hen_02.pdf 9群電子材料・デバイス>半導体
半導体用語	一般社団法人電子 情報技術産業協会	半導体部会〉半導体用語集 <u>ICガイドブック2009年版</u> 用語解説。本文に関係した主な用語を補足説明したものです。http://semicon.jeita.or.jp/word/word.html ・ICガイドブック基礎編> http://semicon.jeita.or.jp/book/docs/green_clean_semicon_1.pdf
装置用語	一般社団法人 日本半導体製造 装置協会	半導体製造装置技術用語集 > 技術分野 ごとに用語集がある。 リソグラフィ、ウェーハプロセス、Modeling and Simulation、計測、組立、検査、FactoryIntegration https://www.seaj.or.jp/semi/yogo/

半導体WEB リンク集 - 2/15

内容	リソース	B: 電気・ 化合物・パッケージ(1)
電気	社団法人 日本電気 技術者協会 (下記とダブル掲載)	<u>音声付き電気技術解説講座</u> 〉 <u>計測・試験</u> 〉トランジスタの構造と基本特性(2)=MOSFETとIGBT= ②IGBT http://www.jeea.or,jp/course/contents/02107/ 講座の概要:電気技術解説講座は、昭和32年から平成15年までの約46年間に亘り、9電力会社の支援を得ながらラジオたんぱの協力によってなされた放送講座「電気技術講座」を継承するものです。この講座は、長年の放送で得られたノウハウとベテランの講師陣により、現場実務、理論解説、電験受験指導等の解説を主としてわかりやすく、役に立つ情報を提供しながら社会に貢献することを目的としています。
電気	<u>わかりやすい高校物</u> 理の部 <u>屋</u>	自己誘導 第6編 電気と磁気 >第4章 電磁誘導と電磁波>第2節 自己誘導と相互誘導>1 自己誘導>6.4.2.1 自己誘導の原理
電気	FNの高校物理	(高校教師)hp >48. オームの法則 http://www.fnorio.com/0048Ohm's_law1/Ohm's_law1.htm#1
電気	電磁気学	九州工業大学 情報工学部松下照男教授 >バーチャルユニバーシテイ: 映像で講義が聞ける。 http://lecture1.vu.kyutech.ac.jp/otabe/index.html
電気	電気入門	電気主任技術者が運営しているサイト。電気の知識、公式・法則・定理 https://denki-nyumon.com/
CMOSイン バータ回路	広島大学	第4章CMOS論理回路(1)CMOSインバータ 元広島大学教授 岩田 穆 2008/11/18 工学部での講義「集積回路基礎」> http://www.ai-l.jp/chap2_ee.html (第1章~12章)
CMOS トランジスタ	EDN Japan	EDN Japan > アナログICの基礎の基礎:第11回「CMOSトランジスタ」の正体 http://ednjapan.com/edn/articles/0903/11/news107.html
コンデンサに 流れる電流	社団法人日本電気 技術者協会	基礎・解説コースに説明 > 理論一般(約50講座): 「コンデンサに流れる電流」: http://www.jeea.or.jp/course/contents/01117/ 他に多くの講座有> http://www.jeea.or.jp/course/contents/01117/ 他に多くの講座有> http://www.jeea.or.jp/course/contents/01117/
拡散電流	物理学解体新書	HOME>物理学用語辞典>半導体物理用語集>拡散電流 (織野氏運営サイト) http://www.buturigaku.net/sub02/Glossary/Contents/Semiconductor/DiffusionCurrent.html
固定抵抗器	Panasonic	Panasonic 固定抵抗器: 公称抵抗値と抵抗値許容差及びカラーコード表示に関する標準 http://www.ne.jp/asahi/evo/amp/device/cr2.pdf

半導体WEB リンク集 - 3/15

内容	リソース	B: 電気 ・化合物・パッケージ (2)
光電効果	ウィキペディア	半導体や絶縁体に光を照射すると光電子が増す現象を内部光電効果という。 http://ja.wikipedia.org/wiki/%E5%85%89%E9%9B%BB%E5%8A%B9%E6%9E%9C
圧電効果	ウィキペディア	圧電効果(piezoelectric effect)とは、物質(特に水晶や特定のセラミック)に圧力(力)を加えると、 圧力に比例した分極(表面電荷)が現れる現象。 https://ja.wikipedia.org/wiki/%E5%9C%A7%E9%9B%BB%E5%8A%B9%E6%9E%9C
ヘテロ接合	ウィキペディア	高電子移動度トランジスタ(HEMT): ヘテロとは英語で異なるという意味で、異なる半導体を 接合したトランジスタのことをいう。GaAs系、GaN系など)が実用化されている。 http://ja.wikipedia.org/wiki/%E9%AB%98%E9%9B%BB%E5%AD%90%E7%A7%BB%E5%8B%95%E5%BA%A6%E3%83%88%E3%83%B3%E3%83%B3%E3%82%B8%E3%82%BB
ウェーハ 薄化技術	ディスコ	ソリューション>最新のKiru(切る)・Kezuru(削る)・Migaku(磨く)技術の特集ページ http://www.disco.co.jp/jp/solution/index.html
製図	個人	<u>トップページ</u> > 機械製図 > 07. 機械製図−投影法・投影図/第三角法など http://dwg.jisw.com/02110/post_200.html
図面の見方	<u>コニック</u>	HP> <u>テクニカルガイド(目次)</u> > <u>1-9) 図面の画き方・図面の見方(基礎編)</u> http://www.conic.co.jp/punch_support/tech_1-9.html

半導体WEB リンク集 - 4/15

内容	リソース	C: 品質・信頼性・ 環境・生産管理・統計(1)
信頼性	ルネサス エレクトロ ニクス	信頼性ハンドブック – Renesas Electronics America 信頼性、信頼性試験、故障解析と信頼性向上など。 故障解析ツール、解析事例 など https://www.renesas.com/ja-jp/doc/products/others/r51zz0001jj0250.pdf
信頼性	ソニー	半導体 品質・信頼性 ハンドブック 第3版 https://www.sony-semicon.com/files/62/Handbook j_202004.pdf
PCT試験	OKIエンシ゛ニアリンク゛	プレッシャクッカ試験(PCT) <u>信頼性評価試験、故障・良品解析、環境試験</u> http://www.oeg.co.jp/Rel/environment.html#jyouki
正規分布	高校数学の基本問題	http://www.geisya.or,jp/~mwm48961/koukou/index_m.htm#linear 統計>正規分布 http://www.geisya.or,jp/~mwm48961/statistics/stddiv1.htm
管理図	MONOist	MONOist > 製造マネジメント > 実践! IE:現場視点の品質管理(15): 生産現場の異常を検知、品質管理に役立つ「C管理図」を使う(1/4~4/4) http://monoist.atmarkit.co.jp/mn/articles/1210/11/news003.html
TQC	情報マネージメント	@IT総合トップ> 情報マネジメント> 情報マネジメント用語事典> TQC(total quality control) http://www.atmarkit.co.jp/aig/04biz/tqc.html

半導体WEB リンク集 - 5/15

内容	リソース	C: 品質·信頼性· 環境·生産管理·統計 (2)
京都議定書	環境省	京都議定書の要点 https://www.env.go.jp/content/900525835.pdf 京都議定書目標達成計画 https://www.env.go.jp/content/900447421.pdf
水質汚濁 防止法	法令検索(e-Gov)	電子政府の総合窓口(e-Gov)>法令検索>水質汚濁防止法 https://elaws.e-gov.go.jp/search/elawsSearch/elaws_search/lsg0500/detail?lawId=346CO000000188
循環型社会	総務省行政管理局	電子政府の総合窓口(e-Gov)>法令(憲法・法律・政令・勅令・府令・省令・規則)の内容を検索して提供 <u>循環型社会形成推進基本法 第二条</u> https://www.env.go.jp/recycle/circul/kihonho/law.html
環境基本法	法令検索(e-Gov)	>(事業者の責務) 第八条 には・・・ https://elaws.e-gov.go.jp/search/elawsSearch/elaws_search/lsg0500/detail?lawId=405AC0000000091
静電気	アキレス	<u>電機・電子 静電気対策品 人体アース リストストラップ</u> https://www.achilles.jp/product/electronics/esd/wrist-strap/
リサイクル	財団法人 家電製品協会	家電リサイクル法 http://www.meti.go.jp/policy/it policy/kaden_recycle/index.html
損益分岐点	有限会社 パース	初級シスアド講座 >損益分岐点 4. 損益分岐点図表 http://www.pursue.ne.jp/jouhousyo/sysad/sysad018.htm
ISO9001 ISO14001	ISO審査登録 センター	http://www.juse−iso.jp/ 品質マネジメントシステム ISO9001 > http://www.juse−iso.jp/kikaku/iso9001/ 環境マネジメントシステム ISO14001 > http://www.juse−iso.jp/kikaku/iso14001/
工程能力指数	客観説TQM研究所	Rep.鵜沼崇郎>・・・> 工程能力指数Cp , Cpkの初心者向けに説明あり https://gloomy-ktqm-labo.ssl-lolipop.jp/method/qc7/3-histogram/index.html#3

半導体WEB リンク集 - 6/15

内容	リソース	D:計測(1)
蛍光X線	リガク	半導体プロセス評価装置>蛍光X線分析装置 種々の膜厚・組成同時分析が可能です。 http://www.rigaku.co.jp/products/p/sepr0005/
エリプソ	堀場製作所	分光エリプソメータ>エリプソの手引き膜厚 0.1nm~5μmまで計算することができる。 http://www.horiba.com/jp/scientific/products-jp/ellipsometers/thin-film-metrology/
エリプソメトリー	J. A. Woollam社	分光エリプソメーターの専門メーカー Home / 技術資料 / エリプソメトリー FAQ https://www.jawjapan.com/technology/ellipsometry=faq
分光光度計	島津製作所	紫外可視近赤外(UV-Vis-NIR) 分光光度計 http://www.an.shimadzu.co.jp/uv/uv.htm
塵埃計	リオン	気中パーティクルカウンタ リオン株式会社 松田 朋信氏 http://www.rion.co.jp/product/docs/10.pdf 試料空気は一定流量でインレットノズルに吸引され、センサ内のレーザが照射されている空間に導かれる。
レーザー 干渉法	富士フィルム	レーザー干渉計の基礎知識 http://fujifilm.jp/business/material/interferometer/knowledge/index.html
ウェハ表面 検査	日立ハイテク	ウェーハ表面検査装置 <u>https://www.hitachi-hightech.com/jp/product_detail/%3Fpn%3Dsemi-ls</u> >半導体の部屋 <u>https://www.hitachi-</u> <u>hightech.com/jp/products/device/semiconductor/manufacturing.html</u>
測長SEM	日立ハイテク	製品情報〉半導体計測•検査装置〉高分解能FEB測長装置(HITACHI CD-SEM) http://www.hitachi-hightech.com/jp/product_list/?ld=sme1&md=sme1-2&sd=sme1-2-2
SEM	日本電子	日本電子(株)JEOL >走査電子顕微鏡 基本用語集 http://www.jeol.co.jp/words/semterms/

半導体WEB リンク集 - 7/15

内容	リソース	D:計測(2)
EDX	材料科学技術 振興財団	EDX(エネルギー分散型X線分光法)EDXは、電子線照射により発生する特性X線を検出し、エネルギーで分光することによって、元素分析や組成分析を行う手法です。 http://www.mst.or.jp/method/tabid/142/Default.aspx
SIMS	MORIKAWA	2次イオン質量分析 SIMS: Secondary ion Mass Spectroscopy (IMA: Ion Micro Analysis) 2次イオン質量分析法は、高感度な表面元素分析法であり、表面の微量不純物や半導体や薄膜中の元素の深さ方向の分布を知る方法である。 http://tri-osaka.jp/group/kikaikinzoku/hyoumen/surface/morikawa/R9/SIMS.PDF
重金属汚染	神戸製鋼技報	神戸製鋼技報/Vol. 52 No. 2(Sep. 2002) http://www.kobelco.co.jp/technology-review/pdf/52_2/087-093.pdf
プラズマ チャージ	KOBE STEEL ENGINEERING	プラズマチャージアップダメージ評価ウェーハの開発 KOBE STEEL ENGINEERING REPORTS/Vol. 52 No. 2(Sep. 2002) http://www.kobelco.co.jp/technology-review/pdf/52_2/083-086.pdf
測定顕微鏡	オリンパス	測定顕微鏡 http://www.olympus.co.jp/jp/insg/ind-micro/product/stm.cfm
熱電対	ウィキペディア	熱電対の原理>『ウィキペディア(Wikipedia)』 http://ja.wikipedia.org/wiki/%E7%86%B1%E9%9B%BB%E5%AF%BE
光学パイロ	チノー	hp>放射温度計>プロセス用放射温度計> 光学的パイロメータ(非接触温度測定) http://www.chino.co.jp/products/thermometers/ir-sa.html
真空計	京都大学	京都大学工学部 物理工学科 高木郁二氏 真空のページ> 3. 真空計 http://www.nucleng.kyoto-u.ac.jp/people/ikuji/edu/vac/
ピラニ 真空計	アルバック販売	<u>真空計</u> > <u>ピラニ真空計</u> http://www.ulvac-es.co.jp/categories/analysis-and-measuring/vacuum-gauge/pirani-vacuum-gauge/
四重極質量分析	堀場エステック	HP >四重極質量分析とは http://www.horiba.com/jp/horiba-stec/products/vacuum-and-gas-monitor/new-rga-configuration/
ヘリウムリーク ディテクタ	<i>NEW</i> ULVAC SHOWCASE	ヘリウム漏れ試験方法は「JIS-Z2331」により、代表的な手法が規定されています。 リークディテクタの基礎知識 > ヘリウム漏れ試験方法

半導体WEB リンク集 - 8/15

内容	リソース	E: ガス・ 薬品・安全(1)
特殊高圧ガス	セミネット	https://semi-net.com/word/ (検索) 特殊高圧ガス > 特殊材料ガスのうち、自然発火性、分解爆発性あるいは高毒性といった特に危険な特性を有するアルシン、ジシラン、ジボラン、セレン化水素、ホスフィン、モノゲルマン、モノシランの7種のガス。高圧ガス保安法施行令で指定されており、消費に際して災害防止のために都道府県への届出などの義務が課せられている。
半導体ガス	AIR LIQUIDE JAPAN	hp> 各種産業用ガス <u>https://industry.airliquide.jp/alj-profile</u>
ガス資料	川口液化ケミカル	hp>工業用ガス>特殊ガス <u>http://www.klchem.co.jp/industry/tokusyugas.php</u> >液化ガス(低温ガス) <u>http://www.klchem.co.jp/industry/ekikagas.php</u>
 高圧ガス 教育	東京大学 物性研究所	東京大学 物性研究所 低温液化室>低温液化質概要>高圧ガス保安教育(新人講習会) テキスト <u>高圧ガス保安教育(新人講習会) テキスト 2009年1月改訂版</u> 1.3 高圧ガスの分類>・液化ガスとは・・・ http://www.issp.u-tokyo.ac.jp/labs/cryogenic/presentation/text2009.pdf
半導体ガス	高千穂化学 工業(株)	hp>製品一覧>半導体製造用ガス Semiconductor Gases・Open>ガス名検索 http://www.takachiho.biz/gases/SemiconductorGases_1.html (MSDSのpdfが付属している)
水素関連情報	高圧ガス保安協会	HP <u>https://www.khk.or,jp/</u> 水素の基礎 <u>https://www.khk.or,jp/hydrogen/handling.html</u> 高圧ガス保安法について <u>https://www.khk.or,jp/hydrogen/security_law/</u> 水素関連事故情報 <u>https://www.khk.or,jp/hydrogen/accident_information.html</u>
警報設定値	新コスモス電機	高圧ガス保安法> 23. ガス漏えい検知警報器設備とその設置場所>1.2 警報設定値・・・ https://www.new-cosmos.co.jp/faq/gas/law/law02.html
ホスフィン	UEKI	HP(ウェキコーホ°レーション) > 商品とサービス>ガス販売>半導体・液晶用ガス>PH3 ホスフィン http://www.ueki.co.jp/product/handotai_gas01.html#PH3 ※他の半導体ガス有
モノシラン	富山県資料	<u>富山県高圧ガス安全協会</u> >事故・保安情報 <u>http://www6.nsk.ne.jp/toyama-kak/1hoanjoho/</u> > <u>保安情報</u> >高圧ガス安全データ集>モノシラン http://www6.nsk.ne.jp/toyama-kak/1hoanjoho/MSDSshu/Gas_no_seisitu/32.pdf
ヘリウム	Wikipedia	http://ja.wikipedia.org/wiki/%E3%83%98%E3%83%AA%E3%82%A6%E3%83%A0

半導体WEB リンク集 - 9/15

内容(リソース	E:ガス·薬品·安全(2)
国際化学物質安全性カード	国立医薬品食品衛 生研究所(NIHS)	国際化学物質安全性カード> エチルアルコール 各種化学物質の安全性カードの検索が可能(日本語、英語)
防毒マスクの 規格	·産業安全技術協会 ·厚生労働省法令等	公益社団法人産業安全技術協会 HP http://www.tiis.or.jp/02_02_subCategory.html 検定>法令と規格> 防毒マスクの規格 ⇒ 厚生労働省法令等データベースシステムへ リンク> 法令等データベースサービス >法令検索 https://www.mhlw.go.jp/hourei/ 法令目次 >第5編労働基準>第3章安全衛生>(検索)防毒マスクの規格
防毒マスク	 興研株式会社 	セーフティソリューション> <u>http://www.koken-ltd.co.jp/product/safe/</u> >防毒マスク <u>http://www.koken-ltd.co.jp/product/safe/industrial/gas.html</u>
有機溶剤	三協化学	>法規情報 > ■ 有機溶剤中毒予防規則 <u>http://www.sankyo-chem.com/yuukisoku.html</u>
イソプロ	三協化学	イソプロピルアルコール(Isopropyl alcohol) http://www.sankyo-chem.com/tantai/Isopropyl%20alcohol1.html
過酸化水素	三菱ガス化学	MSDS 35wt%過酸化水素 http://www.mgc.co.jp/seihin/pdf/35kasankasuiso.pdf
耐薬品性	サンプラテック	業界初のWEB耐薬品性電子辞書 https://navi.sanplatec.co.jp/chemicals
総括安全衛生 管理者の選任	厚生労働省 東京労働局	<u>各種法令・制度・手続き</u> > <u>安全衛生関係</u> > 共通 3「総括安全衛生管理者」「安全管理者」「衛生管理者」「産業医」のあらまし https://jsite.mhlw.go.jp/tokyo-roudoukyoku/hourei_seido_tetsuzuki/anzen_eisei/a-kanri.html
労働安全則	労働安全衛生 全規則	https://www.jaish.gr.jp/anzen/hor/hombun/hor1-2/hor1-2-1-m-0.htm
製造物責任法	ウィキペディア	https://ja.wikipedia.org/wiki/%E8%A3%BD%E9%80%A0%E7%89%A9%E8%B2%AC%E4%BB%BB%E6%B3%95

半導体WEB リンク集 - 10/15

内容	リソース	F: 純水・ 防塵・ クリーンルーム (1)
超純水	日本冷凍空調 学会	hp>用語集>98超純水 電解質などの不純物は含まれていない。 http://www.jsrae.or.jp/annai/yougo/98.html
機能水	オルガノ	HOME >> 製品情報 >> 電子産業向け >> 機能水製造システム https://www.organo.co.jp/business/electronic/multi/ 旧来の半導体・フラットパネル洗浄法であるSC1・SC2洗浄法の代替が可能になります。 用途例: 微粒子除去、還元作用、有機物除去、レジスト除去、Siウェーハの酸化膜作成等
純水測定	メトラー・トレド	超純水・純水測定システム <u>溶存酸素計/溶存CO2計、導電率計/比抵抗計、全有機炭素計(TOC)</u> http://japan.mt.com/home > http://japan.mt.com/jp/ja/home/products/ProcessAnalytics.html
UV酸化	岩崎電気	HOME > 光応用分野 > 半導体関連光源・装置 Http://www.iwasaki.co.jp/product/applied_optics_field/sc/#sc05
全有機炭素計 (TOC)	<u>島津製作所</u>	TOC 全有機体炭素計(Total Organic Carbon Analyzer) http://www.an.shimadzu.co.jp/enviro/water/toc/toc.htm
イオン交換 樹脂	ウィキペディア	イオン交換により水中に含まれる陽イオン・陰イオン(銅や鉄などの重金属イオン)を除去する。 http://ja.wikipedia.org/wiki/%E3%82%A4%E3%82%AA%E3%83%B3%E4%BA%A4%E6%8F%9B%E6%A8%B9%E8%84%82
溶存酸素	日本ミリポア	<u>ホーム</u> >超純水装置・純水装置>純水・超純水について知りたい>水の基礎用語集 純水及び超純水に関連した用語を収録したものです。 >水の基礎用語集>よ(溶存酸素) http://www.emdmillipore.com/JP/ja/lw/learning/terms/ZCGb.qB.1AAAAAFI9bsXcyAC,nav
酸性雨	 気象庁 HP	酸性雨に関する基礎的な知識 <u>https://www.data.jma.go.jp/gmd/env/acid/info_acid.html</u>
ブラウン運動	ウィキペディア	気体に浮遊する微粒子が、不規則(ランダム)に運動する現象である。 https://ja.wikipedia.org/wiki/%E3%83%96%E3%83%A9%E3%82%A6%E3%83%B3%E9%81%8B%E5%8B%95
収納容器の 脱ガス	JEITA	ITRS 2007年版 歩留り改善>気体分子汚染 29/57 http://semicon.jeita.or.jp/STRJ/ITRS/2007/14%202007_ITRS_Yield_Japanese_v2.0.pdf

半導体WEB リンク集 - 11/15

内容	リソース	F:純水・ 防塵・クリーンルーム (2)
ガスモニタ	堀場製作所	微量ガス計測(トレースガスモニタ) http://www.horiba.com/jp/process-environmental/products-jp/combustion-process/online/trace-gas-monitor/
極微量金属	コベルコ科研	半導体関連材料の評価 極微量金属の化学分析技術 http://www.kobelcokaken.co.jp/tech_library/pdf/no22/c.pdf
重金属汚染	神戸製鋼技報	半導体プロセスにおける重金属汚染の検出ーキャリアライフタイム測定装置ー 神戸製鋼技報/Vol. 52 No. 2(Sep. 2002) http://www.kobelco.co.jp/technology-review/pdf/52_2/087-093.pdf
ミニエンバイロメント	MiSUMi	クリーンルームの基本構造 (クリーンルーム対応LCA-2) 技術情報トップ 実務の知識 組立 工場環境 クリーンルームの基本構造 (クリーンルーム対応LCA-2) https://jp.misumi-ec.com/tech-info/categories/machine_design/md01/c1290.html
化学汚染 防止	テクノ菱和	<u>ホーム > ソリューション > クリーンシステム > ケミカルクリーン技術 http://www.techno-ryowa.co.jp/solution/clean/01_03/index.html</u>
クリーンエア	リオン	クリーンエアの周辺 環境技術部 星名 民雄氏 1. 清浄度の定義とクラスの規格 2. 清浄度の測定器 3. 浮遊粒子除去技術 4. 測定の条件 http://www.kobayasi-riken.or.jp/news/No17/17_7.htm
静電気	キーエンス	線電気対策/クリーン機器 静電気対策/クリーン機器 http://www.keyence.co.jp/req/h/a37ydma/show.jsp?done=/seidenki/index.jsp&motive=TOP **Total Control Contro
静電気	シシド静電気	静電気対策と除電>微粒子やダストによる表面汚染の低減 http://www.shishido-esd.co.jp/menace/taisaku/index.html
クリーン ルーム	シーズシー	クリーンルーム超入門編 http://www.csc-biz.com/information/chonyumon.html#1

半導体WEB リンク集 - 12/15

内容	リソース	G:プロセス・装置・真空・部材・治具(1)
レジスト 硬化	ウシオ電機	紫外線硬化(UVキュアリング)技術 https://www.ushio.co.jp/jp/technology/technique/cure/
積層欠陥	豊田中研	過剰なボロンの注入では積層欠陥が発生する https://www.tytlabs.com/japanese/review/rev353pdf/353_051nakashima.pdf
プラズマ	寺小屋みほ(2)	半導体プラズマ装置 https://terakoyamiho.wordpress.com/%E3%83%97%E3%83%A9%E3%82%BA%E3%83%9E%E8%A3%85%E7%BD%AE/
スキャン露光	ウィキペディア	ステッパー > 2スキャナー http://ja.wikipedia.org/wiki/%E3%82%B9%E3%83%86%E3%83%83%E3%83%91%E3%83%BC#.E3.82.B9.E3.82.AD.E3.83.A3.E3.83.8A.E3.83.BC
インプラ	日新イオン機器	日新イオン機器> <u>イオン注入ディクショナリー</u> >イオン注入用語(基本)>・・・
加速器	神奈川大学	神奈川大学情報科学科 中田研究室>実験装置 https://www.sci.kanagawa-u.ac.jp/math-phys/jyojin/setup.j.html 高電圧によりイオンのスピードを加速して、必要なエネルギーを与える。不純物を深く注入するときは、加速電圧を高くする。 写真有り。
СМР	東京精密	HP>CMP装置>用語 <u>http://www.accretech.jp/word/word129.html</u>
CO ₂ バブラー	野村マイクロ サイエンス	超純水帯電防止装置スーパーバブラーWAC http://www.nomura-nms.co.jp/product/02_03_01.html

半導体WEB リンク集 - 13/15

内容	リソース	G:プロセス・装 置・真空・ 部材・治具(2)
真空	川口液化 ケミカル(株)	hp>真空機器>真空とは http://www.klchem.co.jp/vacuum/index.php
真空 (コンダクタンス)	京都大学	工学部物理工学科 高木郁二教官HP>「エネルギー理工学設計演習・実験2」別冊 >付録A 真空に関係する理論>A-8 円形直管のコンダクタンス http://www.nucleng.kyoto-u.ac.jp/people/ikuji/edu/vac/app-A/conduct.html
クライオポンプ	ULVAC	ULVAC ホーム 製品情報>クライオポンプ>クライオポンプについて> [クライオポンプの基礎知識 1]クライオポンプのしくみ http://www.ulvac-cryo.com/products/cryo-pump/about_cp/cp-basic_01/
ニードルバルブ	スウェージロック	流れを制御する締め切り型および流量調節型ニードル・バルブ https://www.swagelok.co.jp/downloads/webcatalogs/jp/MS-01-164.pdf
バルブ シャッター	巴商会	ガスシリンダーの元弁緊急遮断装置でガス漏洩によるガス爆発・ガス中毒の未然防止、並びに地震時に おける二次災害の防止を目的として開発された。 https://www.ipros.jp/product/detail/2000134714/

半導体WEB リンク集 - 14/15

内容	リソース	G:プロセス・装置・真空・ 部材・治具ほか (3)
	平田機工	シリコンウェーハを各種処理装置に取り込むロードポートなどの映像。 http://www.youtube.com/watch?v=O0laF64suDo
ロードポート	東京大学	半導体業界における製造工程の標準化と競争構造—「ロードポート」のケース— http://merc.e.u-tokyo.ac.jp/mmrc/dp/pdf/MMRC114_2007.pdf
НЕРА	Wikipedia	(High Efficiency Particulate Air Filter)定格風量で粒径が0.3 μ mの粒子に対して99.97%以上の粒子捕集率を もち、 かつ初期圧力損失が245Pa以下の性能を持つエアフィルタ。http://ja.wikipedia.org/wiki/HEPA
ULPA	Wikipedia	(Ultra Low Penetration Air Filter) 定格風量で粒径が0.15 μmの粒子に 対して99.9995%以上の粒子捕集率をもち、 かつ初期圧力損失が245 Pa以下の 性能を持つエアフィルタ。http://ja.wikipedia.org/wiki/ULPA
シリコン・熱膨張係数	三菱マテリアル 電子化成	Home > 製品情報 > 製品区分別 > シリコンパーツ製品 > 柱状晶シリコン>柱状晶シリコン特徴> 熱膨張係数 http://www.mmc-ec.co.jp/biz/silicon/
炭化けい素	.クアーズテック (旧東芝セラ)	Hp>・・>炭化けい素>TPSS 炭化けい素セラミックス・・>特長、熱的特性(石英との比較表) http://www.coorstek.co.jp/jpn/products/semicon/tpss.html
石英ガラス	大壁商事	<u>ガラスの種類辞典</u> >石英ガラス <u>http://www.glass-dictionary.com/tainetu/04/</u>
石英ガラス	MARUWA	hp>製品TOP>機構部品〉石英ガラス https://www.maruwa-g.com/products/fused_silica/index.html
ホール素子	旭化成エレクトロ ニクス	https://www.akm.com/jp/ja/
ムーアの 法則	インテル	hp>インテルミュージアム >マイクロプロセッサーの進化を予測してきたムーアの法則 https://www.intel.co.jp/content/www/jp/ja/innovation/processor.html
スケーリング 技術	特許私考	MOS 微細化限界とスケリーング技術: 工業高校教師のサイト(元半導体メーカ) http://takei.cafe.coocan.jp/circuit/dokusou/tokukyo24.pdf
物質の三態	菱電機ビルテクノ サービス	物知り博物館>冷房と暖房のしくみ>物質の三態 http://www.meltec.co.jp/museum/air/index2.html

半導体WEB リンク集 - 15/15

内容	リソース	G:プロセス・装置・真空・ 部材・治具ほか (4)
ウェーハ	Wikipedia	http://ja.wikipedia.org/wiki/%E3%82%A6%E3%82%A8%E3%83%8F%E3%83%BC
シリコン	(一社)新金属協会	シリコンから化合物用金属まで>シリコン部会 http://www.jsnm.or.jp/group/silicon.html
金属融点	個人	金属の融点、沸点の一覧表(°C) http://www.toishi.info/metal/melting_point.html
化合物半導体	住友電工	化合物半導体とは、・・特徴 http://www.sei.co.jp/sc/com_semi/
フォトマスク	凸版印刷	凸版印刷(株) 半導体製造用フォトマスク https://www.toppan.co.jp/electronics/semicon/photo_mask/